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Abstract

We develop the theory of skeins in the presence of codimension one defects. We show that these
produce a skein-theoretic model for the quantum decorated character stacks of [JLSS21], thus extending
their constructions to three manifolds with surface defects. As an application, we give a quantization of
the A-polynomial which refines the well-known construction based on hyperbolic geometry [Dim11].
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1 Introduction

In this paper we initiate the study of skein theory of 3-manifolds with defects, we apply this to construct
invariants of knots, more generally of 3-manifolds with boundary, and we develop an effective algebraic
formalism to compute the resulting invariants. We apply these ideas is to give a new construction of the so-
called “quantum A-polynomial” invariant of knots, in the framework of fully extended TQFT. We apply the
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formalism to give a succinct and constructive definition of the quantum A-polynomial, and we demonstrate
the method by giving computations in many examples. It appears that our computational method is novel
even when applied to the classical A-polynomial. We begin the introduction with a brief review of the key
concepts, and we move quickly to a demonstration of our main results in the form of a worked example.

The A-polynomial. The classical A-polynomial was constructed in [CCG+94], and has been studied
extensively (see for example [CL96, FGL01, Gel01, Gar04, Guk05, Dim11]) . Given a knot K in S3, one
studies a moduli spaceMK of SL2(C)-connections on the knot complement – such moduli spaces are called
character varieties – whose monodromies along paths connecting boundary points are constrained to lie in
the Borel subgroup. Denoting the upper left entry of the meridian and longitude matrix by M and L, the
image of MK determines a one-dimensional subvariety of C×2, and its defining equation AK(M,L) = 0 is
called the A-polynomial.

In an influential series of papers from several groups spanning both the mathematics and physics com-
munities [] emerged a proposal for a certain “quantum A-polynomial” knot invariant – an element

Aq
K(M,L) ∈ Cq[M

±1, L±1],

which would q-deform the classical A-polynomial.
Among these proposals we highlight (a) a proposal [FGL01] using skein theory, (b) a proposal [?] using

canonical quantization and topological recursion, (c) a proposal [] involving the combinatorics of ideal tri-
angulations, and (d) a proposal [?] involving difference equations satisfied by the colored Jones polynomial
(sometimes called “the AJ-conjecture”). The four constructions, to our knowledge, are not entirely inter-
relatable; each has advantages and disadvantages. Our aim is to give a new formalism which refines (a) and
(c). In future work, we intend to return to the relation of our work to approach (d).

Defect skein theory. The skein module of a 3-manifold is a vector space spanned by certain labelled
graphs embedded in the 3-manifold, modulo local “skein relations”, modelled on the graphical calculus of
some ribbon tensor category. Two typical examples of ribbon tensor categories of interest are the categories
Repq G and Repq T , the categories of integral representations of the quantum groups Uqg and Uqt respectively;
the resulting skein theories are very well-studied, especially in the case G = SL2, and T = C×.

A novel component in this paper is the introduction of what we call defect skein theory. Let us fix a
3-manifold M with an embedded surface Σ, and a bipartite coloring of M \ Σ, such that each side of the
defect has distinct coloring. The defect skein module consist again of labelled graphs in the 3-manifolds,
where the labels and skein relations depend now on a pair of ribbon tensor categories (occupying the “bulk”
3-dimensional regions of M) and a pivotal tensor category (constrained to live on the “defect” Σ).

A typical quantum example of a parabolic defect between the categories Repq G and Repq T is given by
the category Repq B, of integrable representation of the quantum Borel subalgebra Uqb.

Decorated character variety. When q = 1, the bulk categories become RepG and RepT , and the defect
category becomes RepB. In this case, the skein module we construct has a very natural geometric meaning.
In the absence of defects, and with the single bulk region labelled by RepG the resulting skein module
recovers the algebra of functions on the G-character variety of M . []

Given a knot K with knot complement MK , we may embed a copy of T 2 as the contraction into the
interior of MK . We color the bulk component near the boundary with RepT , the interior component with
G, and the boundary with RepB. The defect skein module in this case computes the algebra of functions on
the decorated character variety, a moduli space parameterising triples consisting of: a G-local system in the
G-region, a T -local system in the T -region, and a B-reduction of the product G× T -local system restricted
along the surface.

The classical A-polynomial is then naturally reformulated as follows: the T -skein algebra of the boundary
torus is naturally isomorphic to the Laurent polynomial algebra C[M±1, L±1]. The annihilator ideal of the
empty skein is generated by the classical A-polynomial. Given this observation in the classical case, it is
natural to expect – and we indeed rigorously justify – that the quantum deformations we construct give rise
to quantisations Aq

K(M,L) ∈ Cq[M
±1, L±1] of the A-polynomial.
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Figure 1: Stratified tangles in DB that are not stratified-isotopic.

A worked example: the figure-eight knot Our main results in this paper take the following general
form: given any knot K, we define the defect skein module of its knot complement, and we study the
resulting action by skeins on the boundary. Given an ideal triangulation of the knot complement, we define
an explicit localisation of the defect skein module, and we give a complete computation of this localisation
skein module.

In order to give a self-contained exposition of our main results, we now detail the entire computation
for the figure-eight knot 41, suppressing the machinery which justifies each step in the computation, instead
giving pointers to the relevant theorems in the body of the paper. While we focus here on an example knot
for expository purposes, we stress however that the method is completely general. Indeed, we link to a github
repositiory with code which computes the skein module for any knot.

2 Background

2.1 Stratified spaces

We follow the conventions for stratified spaces used in [AFT17, §2]. A stratified space is a paracompact
Hausdorff space X together with a continuous map φ : X → P to a poset P , where P is endowed with
a topology whose closed sets are generated by P≤p for p ∈ P . We use the notation Xp := φ−1(p) for the
individual strata.

Remark 2.1. When dim(Xp) < dim(X), Xp is often referred to as a “defect of codimension dim(X) −
dim(Xp)”, as a “surface defect” (when dim(Xp) = 2) or “line defect” (when dim(Xp) = 1) or “point defect”
(when dim(Xp) = 0). When dim(X) − dim(Xp) = 1, Xp is sometimes called an “interface” or “domain
wall”.

A map between stratified spaces X → P and Y → Q is a pair F1 : X → Y and F2 : P → Q of continuous
maps such that the following square commutes:

X Y

P Q

F1

F2

(2.1)

We call such a map an embedding if both F1 and each F1|p : Xp → YF2(p) is an embedding. An isotopy
between two embeddings F,G of X → P into Y → Q is a pair of continuous maps H1, H2 such that

X × [0, 1] Y

P Q

H1

H2

(2.2)

where X × [0, 1] → P depends only on the first factor and H1(·, 0) = F1, H1(·, 1) = G1. In particular, this
implies that H2 = F2 = G2. We say that F and G are isotopic if there exists an isotopy between them.

In this paper we will consider surfaces and 3-manifolds stratified over the 3-element poset on letters
A,B,C with A ≤ B ≥ C (so that A and C are not comparable in the poset). We are moreover in the
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Figure 2: The disks DA, DB , and DC , shown left to right. We will use striped purple, solid teal, and solid yellow to
denote A, B, and C regions, respectively.

favorable condition that the strata XA, XB , XC are each smooth submanifolds of co-dimension 0, 1, 0,
respectively.

We often denote such spaces as unions of such regions glued along defects, i.e. X = Xa ∪Xb
Xc is

shorthand for the stratified space X
p→ {A ≤ B,C ≤ B} with p−1(A) = Xa, p

−1(C) = Xc both codimension
zero and p−1(B) = Xb an embedded surface. Such a defect Xb is sometimes called an interface or domain
wall in the physics literature.

Definition 2.2. A bipartite 3-manifold consists of the data of a smooth 3-manifold M , with a continuous
map to ϕ : M → P = (A ≤ B ≥ C), with the property that MB is a smoothly embedded surface, separating
a A-colored and a C-colored 3-dimensional region. We allow 3-manifolds with boundary, and allow the
MB-strata to meet the boundary transversely.

Definition 2.3. A bipartite surface consists of the data of a smooth surface Σ, with a continuous map to
ϕ : M → P = (A ≤ B ≥ C), with the property that MB is a smoothly embedded curve, separating an open
A-colored and an open C-colored 3-dimensional region. We allow surfaces to have boundary, and allow the
ΣB-strata to meet the boundary transversely.

Inspired by [AFT17, §2.2], we define a category of basics whose objects are some specified set of stratified
spaces with tangential structure (an orientation in our case) and whose morphisms are smooth open stratified
embeddings which respect all tangential structure. A certain subcategory of this will form the local model
for the decorated surfaces of our defect skein theory.

Definition 2.4. Let Disk denote the (2,1)-subcategory of the category of oriented basics which is generated
under disjoint union by the objects DA,DB ,DC shown in Figure 2. We will take all three generating objects
to have {A ≤ B,C ≤ B} as their underlying poset and consider only those morphisms which respect the label
of the strata.

Remark 2.5. The poset condition in Definition 2.4 translates simply into the requirement that A-regions
can only be embedded into A-regions, C-regions into C-regions, and B-regions into B-regions.

A subcategory of the basics is a valid source for a disk algebra only if each point in each of its generating
objects is contained in some neighborhood isomorphic to another generating object.

Definition 2.6. The (2,1)-category of stratified surfaces, Surf has:

objects: Bipartite surfaces
1-morphisms Oriented stratified embeddings.
2-morphisms: Stratified isotopies of stratified embeddings.

Remark 2.7. We will encounter stratified three dimensional cobordisms between stratified surfaces. Compo-
sition of cobordisms is typically defined up to isotopy and a key technical ingredient is the collar neighborhood
theorem, which says that the boundary ∂M of a topological/smooth manifold M has a neighborhood diffeo-
morphic to (0, 1]× ∂M .

The analogous result does not hold in general for stratified spaces, but holds for stratified 3-manifolds with
only smoothly embedded surface defects which meet the boundary transversely.
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2.2 Categorical background

Here we recall categorical concepts and definitions encountered in this paper, see [AR94] for complete details.

Definition 2.8. The 2-category of K-linear categories Cat has:

objects: Small K-linear categories.
1-morphisms: K-linear functors.
2-morphisms: natural transformations

Definition 2.9. The 2-category of categorical bimodules Bimod has:

Objects: Small K-linear categories.

1-morphisms: From C to D, these are K-linear functors F : C × Dop → Vect. 1

Composition: The composition of two bimodules F : C × Dop → Vect and G : D × Eop → Vect is given
by the coend [ML78, IX.6]:

(F ◦G)(c, e) :=

∫ d∈D
F (c, d)⊗G(d, e) (2.3)

2-morphisms: Natural transformations.

One obtains a fully faithful 2-functor Cat → Bimod, which is the identity on objects, which sends a
functor F : C → D to the bimodule

C × Dop → Vect

(c, d) 7→ Hom(d, F (c)),
(2.4)

and which at the level of 2-morphisms maps a natural transformation to a bimodule homomorphisms in the
obvious way.

Definition 2.10. The 2-category of locally presentable categories PrL has:

Objects: Locally presentable K-linear categories.
1-morphisms: cocontinuous functors.
2-morphisms: natural transformations.

Let Vect ∈ PrL denote the category of vector spaces (whose basis may be of arbitrary cardinality). Given

C ∈ Cat, we will denote by Ĉ := Fun(Cop,Vect) ∈ PrL the associated category of presheaves. A category in
PrL which arises as the free cocompletion of a small category C is said to “have enough compact projectives”.
Indeed, every object of

We note that C maps functorially to its free cocompletion via the Yoneda embedding, C → Ĉ, c 7→ ĉ :=
Hom(−, c). The category Ĉ is sometimes called the free cocompletion of C because it satisfies the usual
universal property for cocontinuous functors out of it.

One has the further structure of a 2-functor ·̂ : Bimod → PrL, also called free cocompletion as follows.
The free cocompletion N̂ of a bimodule N : C × Dop → Vect is the cocontinuous functor N̂ : Ĉ → D̂,

N̂(S) : d 7→
∫ c∈C

N(c, d)⊗ S(c). (2.5)

In the special case that N is obtained from a functor F , the free cocompletion F̂ of the functor F : C → D
is given by the coend

F̂ (S)(d) =

∫ c

Hom(d, F (c))⊗ S(c). (2.6)

A functor between categories in PrL with enough compact projectives lies in the image of the cocompletion
functor if, and only if, it preserves compact projectives objects, or equivalently if, and only if, its right adjoint
is itself cocontinuous.

1Such functors are sometimes called bimodules or profunctors.
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3 Defect skein theory

A central part of this work is to define skein theory of a bipartite surfaces and three-manifolds, as a (3,2)-
TFT with defects, following [Wal06] and [JF21] and [RT90] in the unstratified case. Our constructions will
involve a pair of ribbon tensor categories A and C assigned to the open A- and C- regions, respectively,
together with the data of a pivotal tensor category B assigned to the defect. There is an extra structure
relating A, B and C, captured in the following definition.

Definition 3.1. Fix ribbon tensor categories A and C. A pivotal (A, C)-central tensor category is a pivotal
tensor category B together with a pivotal braided tensor functor A⊠ C → Z(B).

Here Z(B) denotes the Drinfeld center of B equipped with its canonical pivotal braided tensor structure,
while C denotes the tensor category C equipped with the opposite braiding and inverse ribbon structure. We
will abbreviate simply by B the data

B :=
(
A,B, C, (H,J) : A⊠ C → Z(B)

)
. (3.1)

Following [BJS21, Figure 2] and [FSV13], we will use the central structure to determine how skeins are
‘pushed’ from the bulk into the defect. We package this information as a functor analogous to the aforemen-
tioned braided tensor functors RTA : RibA → A and RTC : RibC → C introduced in [RT90].

3.1 Defect skeins and pivotal central tensor categories

The aim of this section is to spell out a skein theory suitable to bipartite surfaces and 3-manifolds.

Definition 3.2. A B-labelling of a bipartite surface is a finite collection {(xi, Vi, ϵi)} of signed (denoted
ϵi ∈ {±1}), framed points xi, each one labelled with an object Vi, of A, B, or C, according to which region
the point xi occupies.

Definition 3.3. A stratified ribbon graph in M is an embedded ribbon graph in M , together with...

Definition 3.4. The category RibB of colored ribbon graphs near the defect has:

Objects: B-labelings of DB. See Figure 5.
Morphisms: Oriented and stratified colored ribbon graphs embedded in DB × [0, 1], compatible with a
B-labeling of DB × {0, 1}. See Figure 4.
Monoidal Structure induced by a embedding DB ⊔ DB ↪→ DB. The unit 1l is the empty object.
Duality: Fix an object X in RibB. Its dual X∗ is obtained by reversing the orientation, i.e. reversing
the signs on all marked points. Coevaluation 1l → X ⊗ X∗ is given by connecting each marked point
with its partner by an arc that remains in a single stratum. We can ensure the arcs are not entangled,
e.g. by representing them by flat half-circles. Evaluation X∗ ⊗X → 1l is described similarly.

For the coefficient system considered in Section 5, the pivotal category assigned to the defect is generated
under co-limits by the image of the central structure. This means the hom-spaces in our skein categories will
be generated by diagrams that are at most transverse to the defect. This motivates the following definition.

Definition 3.5. The subcategory Rib⋔B ⊂ RibB has as its objects those B-labelings none of whose points xi

lie on the B-defect, and as its morphisms only those ribbon graphs whose B-labelled componets are intervals.

Remark 3.6. As a caution we note that stratified isotopy is a weaker equivalence relation than isotopy
relative to the defect, since the former allows the location where a strand meets a defect to change. For
example, the tangles in Figure 6 are stratified-isotopic but not isotopic relative to the defect. A coupon in the
defect may have edges transverse to the surface, see Figure 4. In this case we implicitly pre-compose with
the central structure and think of the underlying morphism as being between objects in B.
Remark 3.7. Any stratified embedding ⊔iDRi

↪→ ⊔jDSj
between finite collections of disks induces a functor

between the Deligne-Kelly tensor products of the associated categories of ribbons. This is because colored
ribbon graphs are themselves stratified embeddings and so the pullback of the disk embeddings are again
morphisms. Similarly, an isotopy between two embeddings induces a natural transformation in the category
of ribbon graphs. We will make frequent use of such induced functors throughout the paper.
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Figure 3: An isotopy induces the half braiding that gives RibB a (RibA,RibC)-central structure.

f

χ
V

f

χ
VW

U

Figure 4: Stratified colored tangles passing through a surface defect. At left, the is transverse to the defect.

Definition-Proposition 3.8. RibB is a pivotal category and a pivotal (RibA,RibC)-central algebra.

Proof. The dual of an object X ∈ RibB is obtained by switching the sign on all points. The canonical

isomorphism iX : X∗∗ ≃−→ X is a monoidal natural isomorphism, since changing the orientation of marked
points commutes with the monoidal structure.

The central structure consists of a braided tensor functor, Hrib : RibA ⊠RibC → RibB together with
a half braiding Jrib. Following [BJS21, Fig. 2], this is constructed by lifting the functor induced by the
embedding DA ⊔ DC ↪→ DB to the Drinfeld center. The half-braiding is induced by an isotopy between the
two embeddings DA ⊔ DB ⊔ DC ↪→ DC shown in Figure 3.

Definition-Proposition 3.9. The following procedure determines an essentially surjective, full, pivotal
monoidal functor RTB : RibB → B:

Given a defect ribbon graph T in DB × [0, 1], first pick a representative in generic position with respect to
the orthogonal projection onto the defect, so that all crossings are transverse and coupons are not identified
by the projection. Project this representative onto the defect, replacing all crossings with a coupon labelled
by the appropriate half-crossing in Z(B).Extend linearly to finite sums of defect tangles in DB × [0, 1]

V
W

Z

χ

7−→ FB( )
H(W ⊠ 1l)

Z

H(1l⊠ χ)

H(V ⊠ 1l)

Figure 5: The functor RTB on objects of RibB. Here H comes from the central structure A⊠ C → Z(B).
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f g

V W

η χ

≃ fg

V W

η χ

Figure 6: A birds-eye view of isotopic tangles, demonstrating that crossings can move through defects. The coupons
can move past each other because the isotopy takes place in a thickening of the disk.

Next use the planar diagram evaluation functor FB to get a morphism in B.

Proof. We start by showing RTB is well defined, i.e. it respects isotopies of the underlying stratified ribbon
graphs and doesn’t depend on the projection of the bulk ribbon graphs into the defect. It suffices to
show that it is invariant under stratified versions of the Reidemeister moves. Let H : A ⊠ C → B be
the braided tensor functor of the central structure composed with the forgetful functor Z(B) → B and

Ja,c,b : H(a⊠ c)⊗ b
≃−→ b⊗H(a⊠ c) the half-braiding.

Crossings can pass through defects: We show that the isotopic graphs in Figure 6 are sent to the
same morphism in B. Let f : H(V ⊠ 1lC)→ H(1lA ⊠χ) and g : H(W ⊠ 1lC)→ H(1lA ⊠ η) be the labels
for the two coupons in the tangles shown in Figure 6. Then RTB maps the left tangle of Figure 6 to
the morphism

H(V ⊠1l)⊗H(W⊠1l) H(1l⊠χ)⊗H(1l⊠η) ≃ H(1l⊠χ⊗η) H(1l⊠η⊗χ)f⊗g H
(
id⊠σC

)
(3.2)

While the tangle on the right is sent to

H(V ⊗W⊠1l) H(W⊗V ⊠1l) ≃ H(W⊠1l)⊗H(V ⊠1l) H(1l⊠η)⊗H(1l⊠χ)
H(σA⊠id) g⊗f

(3.3)

By assumption H is a braided tensor functor, so σZ(B) = H
(
σA⊠C

)
= H

(
σA ⊠ σC

)
. It follows that

σZ(B)|H(1l⊠−) = H
(
id⊠ σC

)
and σZ(B)|H(−⊠1l) = H(σA ⊠ id). (3.4)

Since the braiding is a natural transformation, we conclude

H
(
id⊠ σC

)
◦ (f ⊗ g) = σZ(B) ◦ (f ⊗ g)

= (g ⊗ f) ◦ σZ(B)

= (g ⊗ f) ◦H
(
σA ⊠ id

)
.

It follows that (3.2) and (3.3) are the same morphism up to composition with the isomorphisms
H(−⊗−) ≃ H(−)⊗H(−).

Stratified Reidemeister 3 holds: Our previous result means we only need to consider tangles where
no strand moves between regions. Even so, the three strands can be in some combination of the A,B,
and C regions.
The functor RTB sends any crossing to the appropriate braiding in Z(B), so the various stratified
versions of the Yang-Baxter equation all simplify to those of Z(B), where some of the objects happen
to be in the image of the functor H.

Stratified Reidemeister 2 holds: By the same argument as above, this reduces to and hence follows
from the analogous statement about the invertibility of the braiding in Z(B).

Both fullness and essential surjectivity follow from Lemma ??, which shows that FB : PlanarB → B is
both.
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Definition 3.10. Let RTB : RibB → B be the functor described in Lemma 3.9.

Lemma 3.11. Skein relations are compatible with embeddings. Let ιA : DA ↪→ DB and ιC : DC ↪→ DB be
stratified embeddings. If two A (resp. C) colored ribbon graphs are equivalent as A (resp. C) skeins, then
their push forwards along ιA (resp. ιC) are equivalent as defect skeins.

Proof. The claim is that the following diagrams commute:

RibA RibB

A ≃ A⊠ 1l B

(ιA)∗

RTA RTB

H|A⊠1l

RibC RibB

C ≃ 1l⊠ C B

(ιC)∗

RTC RTB

H|1l⊠C

(3.5)

3.2 The defect skein category

We now define the defect skein category and associated constructions analogously to the unstratified skein
theory, using our defect Reshetikhin-Turaev evaluation functors as a local model near the domain walls. Fix
a compact oriented 3-manifold, possibly with boundary, and a B-labeling X on ∂M .

Definition 3.12. The relative defect skein module SkB(M,X) is the K-module spanned by isotopy
classes of stratified ribbon graphs in M compatible with X. These are taken modulo the relations induced by
RTA,RTC , and RTB from the embedding of any cylinder DR × [0, 1] ↪→ M which respects the stratification
and labeling of M . Here R = A,B, C.

As a special case X = ∅, we abbreviate by SkB(M) and refer to this as the defect skein module of M .

Definition 3.13. The defect skein category SkCatB(Σ) has

objects Finite collections of oriented framed marked points in Σ, colored by objects of the category
associated to their region.
morphisms: The homomorphism space from X to Y is the relative defect skein module

Hom(X,Y ) := SkB(Σ× [0, 1], X ⊔ Y ), (3.6)

where X is on Σ× {0} and Y is on Σ× {1}. Composition is given by stacking copies of the thickened
surface and a smoothing at boundary points.

We note that SkCatB(DA) ≃ A and SkCatB(DC) ≃ C as ribbon categories. Now we show a similar
result for SkCatB(DB).

Lemma 3.14. We have an equivalence SkCatB(DB) ≃ B as pivotal (A, C)-central algebras.

Proof. By Lemma 3.9, the pivotal functor RTB : RibB → B is full and essentially surjective. Since skein
relations are exactly the kernel of this map, it follows that RTB induces an equivalence of pivotal categories
SkCatB(DB) ≃ B.

By Remark 3.7, the (RibA,RibC)-central structure on RibB descends to the skein category. Let HSk, JSk

be the central structure on SkCatB(DB). Equivalence of the central structures can be expressed by this
commutative diagram:

SkCatB(DA)⊠ SkCatB(DC) Z(SkCatB(DB))

A⊠ C Z(B)

RTA ⊠RTC

HSk,JSk

Z(RTB)

H,J

Note that a functor F : C → D doesn’t necessarily induce one between Drinfeld centers. To get the right-
most vertical arrow in the above diagram we’ve used that RTB is a categorical equivalence. Tangles entirely
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in the bulk regions of DB are exactly those in the image of HSk. In the construction of RTB such tangles
are projected onto the defect where H gives the appropriate objects and morphisms of B. This implies that
RTB ◦HSk = H ◦ (RTA ⊠RTC).

When projection onto the defect introduces crossings, they are replaced by coupons labeled by the half
braiding J . The half braiding JSk is induced by the isotopy in Figure 3, which introduces crossings between
strands. Commutativity of the diagram follows from the fact that RTB sends a coupon to the labelling
morphism.

Definition 3.15. The transverse defect skein category SkCat⋔B(Σ) is the subcategory ...

Corollary 3.16. We have an equivalence SkCat⋔B(Σ) ≃ End(1B)modA⊠C

4 Monadic reconstruction for defect skeins

Skein categories as defined in the preceding section are of limited computational utility due to their non-
finitary definition: one has as an infinite-dimensional space of possible skeins, modulo an even more infinite
set of relations. An algebraic approach to skein theory was initiated in [BZBJ18] and pursued in [?].
This involves using monadic reconstruction to describe the free completions of skein categories of surfaces as
categories of modules for certain finitely presented algebras called internal skein algebras. This was extended
in [?] to describe the functors given by cobordisms between surfaces via internal skein bimodules over internal
skein algebras.

In this section, we extend the monadic formalism to the defect setting, noting a few key differences from
the unstratified setting.

In what follows (A, C, (H,J) : A ⊠ C → Z(B)) denotes a pair of ribbon categories along with a pivotal
category and (A, C)-central algebra B. We use H to mean the functor A⊠ C → B induced by forgetting the
half braiding on the Drinfeld center and J to mean the half braiding.

The internal skein algebra of a surface is defined via disk insertion at a distinguished interval, called a
gate, along a boundary component. The location of the gate has minimal impact for path-connected surfaces.
Adding additional gates in a connected component induces a categorical equivalence on the category of
internal modules for the internal defect skein algebra, [JLSS21, Lemma 4.1]. In the presence of defects,
we must instead consider connected components of the top dimensional strata. Therefore, in general, we
will work with many gates on a single stratified surface. See [Häı22, §7.2] for a careful treatment (in the
unstratified setting) of internal skein algebras defined with multiple gates.

Besides this mild difference, we follow the definition of internal defect skein algebras and modules given
in [GJS21]. We assume that our surfaces have non-empty boundary, see Section 4.2.1 on puncturing surfaces.

Definition 4.1. Let Σ ≃ ΣA ∪ΓB
ΣC denote a stratified surface and G be a collection of disjoint intervals

(called gates) along ∂Σ, also disjoint from the interface ΓB. The inclusion G × [0, 1] ↪→ Σ induces the disk
insertion functor:

P : SkCat(G × [0, 1])→ SkCat(Σ) (4.1)

Suppose there are n gates in the A region, and m in the C region. Then SkCat(G× [0, 1]) ≃ A⊠n⊠C⊠m. We
frequently consider P as a functor from the product category. Although it introduces conflicting notation, we
will use the shorthand G := A⊠n ⊠ C⊠m.

In the free cocompletion, the functor P induced by disk insertion is guaranteed to have a right adjoint:

P̂R : ŜkCat(Σ)→ ŜkCat(G × [0, 1]). (4.2)

The monad P̂RP̂ of this adjuction is an endofunctor of ŜkCat(G × [0, 1]) ≃ Fun
(
A⊠n ⊠ C⊠m,Vect

)
.

Definition 4.2. Evaluating the monad induced by disk insertion at the unit 1̂l = Hom(1l,−) gives an algebra
object in the free cocompletion of G = A⊠n ⊠ C⊠m. We will call it the defect internal skein algebra:

SkAlgintG (Σ) := P̂RP̂(1̂l). (4.3)

10
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Figure 7: The incident edges in a product are ordered right to left according to the orientation at a gate.

Note that G× [0, 1] is a thickened curve and therefore its skein category has a monoidal structure. This is
the source of the product on the internal skein algebra. In [GJS21], the internal skein algebra is equivalently
defined as a lax monoidal functor

SkAlgintG (Σ) : G → Vect

V 7→ Sk
(
Σ× [0, 1];P(V ),∅

)
.

(4.4)

The equivalence of these definitions follows from the fact that an algebra object in Ĝ is exactly a lax monoidal
functor G → Vect, after the short computation:

SkAlgintG (Σ)(V ) ≃ HomĜ

(
V̂ , P̂RP̂(1̂l)

)
≃ Hom

ŜkCat(Σ)

(
P̂(V ), P̂(1l)

)
≃ HomSkCat(Σ) (P(V ),P(1l)) = Sk(Σ× [0, 1];P(V )).

(4.5)

Here the first and third equivalence use the Yoneda lemma while the second follows from the definition of

an adjoint together with P̂(Ŵ ) ≃ P̂(W ).

Definition 4.3. Let M = MA ∪SB
MC be a stratified 3-manifold. Fix an identification ∂M = Σ ∪Γ R. For

the purposed of disk insertion we treat Γ as the boundary of ∂M . Fix gates G × [0, 1] ↪→ Σ with associated
disk insertion functor P. Recall the shorthand G := SkCat(G × [0, 1]). The defect internal skein module
of M is the functor

Skint(M) : G → Vect (4.6)

given by
V 7→ Sk

(
M ;P(V )

)
. (4.7)

This is a SkAlgint(Σ) module internal to the free cocompletion of G, meaning there is a morphism of
presheaves SkAlgint(Σ)⊗ Skint(M)→ Skint(M). By (4.5), SkAlgint(Σ) ≃ Skint(Σ× [0, 1]) as presheaves.

We take a moment to give a more concrete description of the internal skein algebra and module. First,
by the co-Yoneda lemma

Skint(M) ≃
∫ V ∈G
V̂ ⊗ Sk(M,P(V )). (4.8)

Hence an element of the internal skein module is a state v ∈ V together with a skein in M whose restriction
to ∂M is the labelling P(V ), up to the coend equivalence relation. Because labellings P(V ) have marked
points only immediately adjacent to gates, we will draw skeins as starting and ending on the gates themselves.
When multiple edges of a skein meet at a single gate in a thickened surface, their relative heights are recorded
pictorial according to the orientation of the boundary component. See Figure 7.

Remark 4.4. Hence, internal skein modules and defect internal skein modules are, up to fixing conventions,
equivalent to so-called “stated skeins” constructions [?]. In particular, in the presence of parabolic induction
defects, one lands on definitions very close to that of Müller’s early work.

4.1 Cobordisms and gluing

We now define a categorified oriented 2+1 TQFT for cobordisms with smoothly embedded codimension-
one defects. An important ingredient for gluing is that the boundaries of our cobordisms admit stratified
collared neighborhoods, see Remark 2.7. For our main application (see Section 7) we will need to understand
stratified analogs of one and two handle attachments and three dimensions.
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Definition 4.5. Let M be a stratified 3-manifold as in Definition 3.12, with the additional data of a decom-
position of its boundary ∂M ≃ (Σin ⊔Σout)∪R. We will write Sk(M) : SkCat(Σin)

op×SkCat(Σout)→ Vect
for the bimodule defined by the relative defect skein module Xin, Xout 7→ SkB(M,Xin ⊔Xout), and refer to
this as the defect skein bimodule functor.

The following result is a mild generalization of [GJS21, Theorem 2.5] and [Wal06, Theorem 4.4.2] to
oriented 3-manifolds with smoothly embedded codimension-one strata.

Lemma 4.6. Let M be an oriented stratified 3-manifold with a stratification M ≃ MA ∪SB
MC . Fix a

decomposition ∂M ≃ Σgl ∪Σgl ∪R and let Mgl denote M with the two copies of Σgl identified. There is an
equivalence of functors SkCat(R)op → Vect

Sk(Mgl)(−) ≃
∫ X∈SkCat(Σgl)

Sk(M)(X ⊔X ⊔ −). (4.9)

The coend in (4.9) motivates our earlier requirement that the coefficient categories A,B, C are themselves
small. The proof of [Wal06, Theorem 4.4.2] applies here after checking that claims regarding isotopies can
be made about stratified isotopies. The main claim is that collar shift isotopies and stratified isotopies
supported in balls disjoint from Σgl ⊔ Σgl generate stratified isotopies on Mgl.

Let Σ1
M12→ Σ2

M23→ Σ3 be a pair of composable stratified cobordisms. Applying Lemma 4.6 to the case
when M = M12 ⊔M23, Σgl = Σ2, and R = Σ1 ⊔ Σ3, we obtain

Sk(M12 ∪Σ2 M23;X1 ⊔X3) ≃
∫ X2∈SkCat(Σ2)

Sk(M12;X1 ⊔X2)⊗ Sk(M23;X2 ⊔X3) (4.10)

naturally in X1 ∈ SkCat(Σ1) and X3 ∈ SkCat(Σ3) This gives a useful corollary:

Corollary 4.7. Together SkCatB(−) and Sk(−) define a contravariant functor from the category of oriented
2+1 collared cobordisms with smoothly embedded codimension-one defects to Bimod. We will denote this
categorified 2+1 TQFT by

SkB : Cobor2+1 → Bimod (4.11)

We rely heavily on Lemma 4.6 in Section 7.2, where we use the gluing properties of defect skein categories
to decompose 3-manifolds into triangulations.

4.2 Cobordisms and gluing for internal skein algebras and modules

We now consider gluing for internal skein modules and algebras. The main application we have in mind is
gluing together tetrahedra in a triangulated three-manifold. See Section ?? for a detailed description in the
case of decorated skein algebras.

Lemma 4.8. Let M be an oriented stratified 3-manifold with a stratification M ≃ MA ∪SB
MC . Fix a

decomposition ∂M ≃ Σgl ∪ Σgl ∪ R and let Mgl denote M with the two copies of Σgl identified. Let Ggl
denote the gate category on Σgl and GR that on R. The internal skein modules of M and Mgl are related as
follows:

Skint(Mgl)(−) ≃
∫ V ∈Ggl

Skint(M)(V ⊠ V ∗ ⊠−) (4.12)

Proof. Let PR : GR → SkCat(R), Pgl : Ggl → SkCat(Σgl) and P : G → SkCat(∂M) denote the disk insertion
functors. Note that Skint(N) = Sk(N) ◦ P∂N as functors. Then

Skint(Mgl) = Sk(Mgl) ◦ PR ≃
∫ X∈SkCat(Σgl)

Sk(M)(X ⊔X ⊔ PR(−))

≃
∫ V ∈Ggl

Sk(M)(Pgl(V ) ⊔ Pgl(V ) ⊔ PR(−))

=

∫ V ∈Ggl

Sk(M)(P(V ⊠ V ∗ ⊠−) =
∫ V ∈Ggl

Sk(M)int(V ⊠ V ∗ ⊠−).

(4.13)

The coend on the first line is a result of Lemma 4.6, while the equivalence in the second line follows from
the fact that every X in SkCat(Σgl) is isomorphic to some Pgl(V ).

12



4.2.1 Changing gates and closing punctures

For computations it is sometimes practical to change the number of gates used in the construction of internal
skein algebras and modules. By closing a gate we will mean taking invariants of the associated disk insertion
action. On the level of the internal skein algebra, this is restriction to an invariant sub-algebra generated by
those skeins which do not have an endpoint at the specified gate.

By opening a gate we will mean passing to a larger algebra in which skeins are allowed to end at an
additional gate. In practice we will often set up our marked surfaces to have sufficient gates for gluing
operations, then we will close all gates near the end of a computation to arrive at the (non-internal) skein
algebra.

Going further, it is sometimes necessary to puncture a surface so that it has sufficient boundary com-
ponents for monadic reconstruction. In the language of [JLSS21, Sec. 1.3], this is the need for a G-chart.
Let Σ∗ := Σ \ D be a stratified punctured surface. Let Gp denote the gates on the boundary component
associated to the puncture and Gr the gates on the rest of the boundary. Quantum Hamiltonian reduction
allows us to pass from SkAlgint(Σ∗) to SkAlgint(Σ). This technique is used extensively in [GJS21], where
the unstratified surfaces need at most one puncture. It is a two step process In the first step we pass to the
invariant sub-algebra

SkAlgint(Σ∗)Gp ⊂ SkAlgint(Σ∗) (4.14)

generated by skeins which do not meet the gates at the puncture. In the second step we quotient by the
relation that fixes the monodromy around the puncture. To be precise, this means setting the skein parallel to
the puncture’s boundary component which shares its labelling equal to the appropriate quantum dimension.

5 Parabolic induction and restriction

This section is dedicated to constructing our main example of a local coefficient system, built from the
representation theory of the quantum group, its Borel subalgebra, and the universal Cartan subquotient.
We refrain from giving detailed presentations of various quantum groups we consider, for which we refer the
reader to [].

Let G be a reductive group, with fixed Borel subgroup i : B ↪→ G, and its universal Cartan quotient
π : B → T := B/[B,B].2 Let Ei, Fi,Ki for i = 1, . . . , n be the Serre generators of Uqg. We will denote the
entries of the Cartan matrix by aij , the weight lattice by Λ, and the fundamental weights by λ1, . . . , λn. We
identify ι : Uqb ↪→ Uqg with the subgroup generated by the Ei and Ki. The projection π : Uqb → Uqt is
given by Ei 7→ 0, Ki 7→ Ki.

5.1 The parabolic restriction disk algebra

We will describe the disk algebra that implements parabolic restriction. The bulk of this section is a discussion
of the various candidates for the central algebra associated to the defect itself. In short, there are a few
options which don’t work for technical reasons and two options, Repq B and R̃epqB := End(1l)−modG×T ,
which do work and which lead to similar theories.

Let Repq G be the ribbon category of finite dimensional representations of Uqg. Let Repq T be the full
subcategory (also ribbon) of those finite dimensional Uqt-representations spanned by weight vectors vµ on
which the Ki act by the ith fundamental weight Ki · vj = q⟨λi,µ⟩vj .

As mentioned, there are various categories associated to the Borel, only some of which give rise to
well behaved defects between G and T regions. First, neither Uqb − mod nor its full subcategory of finite

dimensional modules Uqb−modfd is well suited to the task.
A compromise is struck with Repq B ⊂ Uqb − mod, the full subcategory of locally finite Uqb-modules

whose restrictions to Uqt land in Repq T . This was used to define the quantum decorated character stacks of
[JLSS21] and is described in some detail in [JLSS21, §2.3]. It gives rise to a well behaved interface between
Repq G and Repq T , but as we’ll see the associated skein categories do not enjoy full monadic reconstruction.

2T is commonly thought of as a subgroup of B, or of G. We instead treat it as a quotient because we want a Repq T–module
structure on Repq B, instead of the other way around. We note that T defined this way as a quotient of B is canonically
independent of the choice of B.
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There is a Repq G⊠Repq T
bop-action on Repq B, given on objects by (V ⊠ χ)⊠ (−) = ι∗V ⊗ π∗χ⊗ (−).

In Section 5.1.1 this will be lifted to a (Repq G,Repq T )-central structure. For now we consider what the
underlying action. Let actm be the action applied to an object m ∈ Repq B:

actm : Repq G⊠ Repq T
bop → Repq B

V ⊠ χ 7→ ι∗V ⊗ π∗χ⊗m.
(5.1)

This has a right adjoint, actRm , so we have an associated monad (Am := actRm actm, µ : AmAm ⇒ Am, ϵ :
id ⇒ Am). Next we compare the Eilenberg-Moore category of this monad with Repq B itself. There’s a
adjoint pair of comparison functors:

Repq B Am(1l)−modRepq G⊠Repq T bop

L̃

R̃

(5.2)

Note that actRm is also denoted Hom(m,−) and called the internal hom functor. Similarly, Am(1l) is written
End(m) and called the internal endomorphism algebra. In the specific example of parabolic reduction End(1l)
is sometimes denoted Oq(G/N) or Fq(N \G). The comparison functor R̃ sometimes defines a reflexive
embedding or even an equivalence:

Theorem 5.1 ([JLSS21, BZBJ18]). Fix an action A ⊠M → M, where A is a rigid tensor category and
M is abelian. Let m denote an object of M, actm : A → M the action on m, and Am the monad of the
adjunction (actm, actRm).

1. Suppose that actRm is conservative (i.e. reflects isomorphisms.) Then we have a reflexive embedding

M ↪→ Am −modA (5.3)

2. Suppose that actRm is both conservative and colimit-preserving. Then the above embedding is an equiv-
alence:

M≃ Am −modA (5.4)

With this theorem in mind, we prove the following:

Lemma 5.2. The functor actR1l : Repq B → Repq G⊠ Repq T
bop is conservative but not colimit preserving.

Compare to [JLSS21, Prop. 3.41]. Hence we have a reflexive embedding

Repq B ↪→ End(1l)−modRepq G⊠Repq T bop (5.5)

Both Repq B and End(1l)−modRepq G⊠Repq T bop have (Repq G,RepTq )-central structures.

5.1.1 The half braiding

The category Repq B can be endowed with an (Repq G,Repg T )-central structure:

Repq G⊗ Repq T
op → Z(Repq B)

V ⊠ χ 7→
(
i∗(V )⊗ π∗(χ), c(V⊠χ,·)

)
,

where the half braiding c(V⊠χ,·) is defined as follows. Let RG, RT denote the R-matrices defining the braiding
for Repq G and Repq T , then:

c(V⊠χ,W ) :
(
i∗(V )⊗ π∗(χ)

)
⊗W W ⊗

(
i∗(V )⊗ π∗(χ)

)
.

σ(123)R
G
13(R

T
32)

−1

Theorem 5.3. Let G = SL2 C or PSL2C. For any decorated surface Σ, the skein category SkCat(Σ)
associated to the parabolic induction algebra is equivalent to the quantum decorated character stack Z(Σ) of
[JLSS21].

Proof. sorry;

This is a corollary of it being stratified factorization homology.
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Figure 8: T -region commutation relations for skeins meeting only at a single gate.

5.2 Quantum cluster charts

5.3 Geometric interpretation

In this section we focus on the classical setting q = 1, we recall a number of well-known moduli spaces of
connections, and we explain how they are recovered formally from the preceding constructions. A reader
who is puzzled by the geometric meaning of the formal constructions – gates, disk insertions, parabolic
restriction, etc. – may find the present section helpful for building some intuition.

We begin by recalling the construction of the A-polynomial [CCG+94, CL96]. The set of homomorphisms
from the fundamental group of a compact manifold M to an algebraic group G is called the G-representation
variety of M , and is denoted RG(M) := Hom(π1(M), G). The representation variety carries an algebraic G-
action given by post-composition with the conjugation action of G on itself, and the associated GIT quotient
is called the G-character variety of M :

χG(M) := RG(M)//G. (5.6)

We will denote the projection RG(M)→ χG(M) by πM .
Character varieties are used to construct a polynomial knot invariant as follows. Let K ↪→ S3 be a knot

and n(K) ⊂ S3 an open tubular neighborhood of its image in S3. The character variety of the complement
MK := S3 \ n(K) is high dimensional, singular, and in general non-reduced. To obtain a simpler object we
start by considering the regular map induced by inclusion ι : ∂Mk ≃ T→Mk of the boundary torus:

ι∗ : χSL2
(Mk)→ χSL2

(T) (5.7)

Now we have the following chain of maps:

χSL2
(Mk)

ι∗−→ χSL2
(T) πT←− RSL2

(T) ξ←− RT (T), (5.8)

where ξ : RT (T) → RG(T) in induced by the inclusion T ↪→ G. The map πT ◦ ξ is often replaced by an
eigenvalue projection

χSL2
(T) C∗ × C∗/Z2

(X,Y ) ∼
((

λ 0
0 λ−1

)
,
(

µ 0

0 µ−1

))
(λ, µ) ∼ (λ−1, µ−1).

η

(5.9)

Note that η is an isomorphism, but not as well suited as πT, ξ to the skein theoretic description we seek in
Section 5.4.

Next, let Y1, . . . , Yn be the irreducible components of χSL2
(MK) with dim ι∗(Yi) = 1 in χSL2

(T). The
A-polynomial of K is a defining polynomial of the affine curve 3

VK := (πT ◦ ξ)−1 (ι∗(Y1 ∪ · · · ∪ Yn)) ⊂ RT (T). (5.10)

Note that RT (T) ≃ T × T ≃ C∗×C∗ has closure C2, so that the A-polynomial can be identified with a
two-variable polynomial.

To obtain a specific polynomial we must fix a choice of basis, i.e. a meridian m and longitude l on the
boundary torus. These determine generators ℓ,m of the coordinate ring O(C2) ≃ C[ℓ,m]. We ask that the
meridian bound a disk in n(K) and and have linking number +1 with the original knot. The longitude is
similarly determined by having intersection number +1 with the meridian. This determines A(ℓ,m) up to a
scalar. In [CCG+94, §2.3] it’s shown that this scalar can be chosen so that A has integer coefficients. We
fix A up to a sign by requiring it has integer coefficients and no integer factor.

3This subvariety is 1-dimensional because the restriction of πT ◦ ξ can be understood as the quotient (C∗)2 → (C∗)2/Z2 by
a finite group.
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Figure 9: The data specifying ϕ : RG(Σ) → C.

5.4 The skein theoretic description

A noncommutative analog of the A-polynomial, known as the A-ideal, was constructed using SL2 C skein
theory in [FGL01]. In [FGL01, Gel01] elements of the A-ideal were shown to annihilate the colored Jones
polynomial and in some cases to determine it entirely. This relationship is now commonly understood in
terms of the AJ conjecture, formulated in [Gar04] and manifested in physical terms in [Guk05].

Here we give a description of the classical A-polynomial in terms of defect skein categories with symmetric
monoidal coefficients. Let

Cl := (RepG,RepT,RepG× RepT bop → Z(RepB)) (5.11)

be the classical coefficient system associated with parabolic induction, with G = SL2 C.
Let ΣT and ΣG denote a surface labeled by a single T or G region, respectively. When the context is

clear we will also use these to denote the relevant thickened surfaces. Let ΣB := ΣT ∪B ΣG be the stratified
thickened surface with a B-defect parallel to the boundary components. We will color the knot complement
MK by G but suppress the subscript. Let M̃K := MK ∪ TB denote the knot complement with a B-defect
parallel to its boundary torus, which separates a G-labeled bulk from a small T -labeled region enclosing its
boundary.

Our goal is the following equivalence of SkAlgCl(TT )-modules:

C[l±1,m±1]/⟨A(l,m)⟩ ≃ SkAlgCl(TT ) ·∅ ⊂ SkModCl(M̃K). (5.12)

Here we’ve already used the fact that SkAlgCl(TT ) ≃ C[l±1,m±1].
We start by translating the various varieties and regular maps involved Section 5.3 into skein theoretic

ones.
The classical (i.e. RepG) skein algebra describes functions on the G-character variety while the internal

skein algebra describes those on the G-representation variety:

O(χG(Σ)) ≃ SkAlgRepG(Σ), O(RG(Σ)) ≃ SkAlgintRepG(Σ
∗). (5.13)

The definition of internal skein algebra relies on our surface having a non-empty boundary. We use Σ∗ =
Σ \ D⊔n to denote the appropriate punctured surface.

In (5.10), the regular map ξ : RT (Σ) → RG(Σ) is used to define a set map between sub-varieties {V ⊂
RG(Σ)} → {V ⊂ RT (Σ)}. In algebraic terms, it’s defining a functor O(RG(Σ))-mod → O(RT (Σ))-mod.
Looking towards monadic reconstruction of skein categories [BZBJ18, §4.1] and the appearance of presheaf-
valued functors in Section 4.1, we propose that the skein theoretic manifestation of ξ is a functor SkCatCl(ΣG)→
ŜkCatCl(ΣT ).

Lemma 5.4. Let AG := O(RG(Σ)) and AT := O(RT (Σ)) and recall that ξ∗ : AG → AT gives AT the
structure of an (AT , AG)-bimodule. The functor AT ⊗AG

− : O(RG(Σ))-mod→ O(RT (Σ))-mod:

1. Sends a finitely generated module with support V ⊆ RG to one with support ξ−1(V ) ⊆ RT .

2. Is equivalent after free completion with Skint(TB)⊗SkAlgint
cl (TG) −.

Proof. The first claim follows directly from supp(AT ⊗AG
M) = ξ−1(supp(M)), see [Sta24, Section 056H].

Claim: ÂG ≃ SkAlgint(Σ). Our starting point for the second part of the lemma is the set of equivalences

ÂG ≃ SkAlgintRepG(Σ
∗) and ÂT ≃ SkAlgintRepT (Σ

∗), where X̂ := Hom(−, X).
Suppose that Σ∗ has r boundary components and is genus g, so that RG(Σ) ≃ G2g+r−1.
We can build a C-valued function ϕ on the representation variety from the following data: Pick a tuple

ρi : G → End(Vi), i = 1, . . . , 2g + r − 1 of finite dimensional representations of G. For each i additionally
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pick a state vi ⊗ fi ∈ Vi ⊗ V ∗
i . Define

ϕ : G2g+r−1 −→ C

(A1, . . . , Arg+r−1) 7−→
2g+r−1⊗

i=1

fi(ρi(Ai)vi)
(5.14)

Such ϕ generate AG, and the analogous functions generate AT .
To get a map AG → SkAlgintRepG(Σ) we start by recalling (4.8):

SkAlgint(Σ) ≃
∫ V ∈RepG

V̂ ⊗ Sk(Σ× [0, 1],P(V )).

Where P : RepG→ SkCatRepG(Σ) is the disk insertion functor. For ϕ as in (5.14), let Γϕ be the colored by
the representations Vi, with states vi, jf as shown in Figure 9. Let Wϕ := V1⊗V ∗

1 ⊗ · · ·⊗V2g+r−1⊗V ∗
2g+r−1

We get a map ϑ : AG → SkAlgintRepG(Σ):

AG Ŵϕ ⊗ Sk(Σ× [0, 1];P(Wϕ)) SkAlgintRepG(Σ)

ϕ v1 ⊗ f1 ⊗ · · · ⊗ v2g+r−1 ⊗ f2g+r−1 ⊗ Γϕ ϑ(ϕ)

(5.15)

where the second map follows from (4.8) and the definition of a colimit. It follows from [GJS21, Prop 2.28,
Prop 2.29] that ϑ is an isomorphism when r = 1. The case when r > 1 is a small generalization.

The module structures give equivalent functors. Next we prove that −⊗SkAlgint
Cl (TG) Sk

int
Cl (TB) and

−⊗AG
AT are equivalent functors. The idea is that ξ∗ is implemented by the B-defect in TB .

Figure 10: Moving internal skeins across the defect.

Let ϑG : AG → SkAlgintCl (ΣG) and ϑT : AT → SkAlgintCl (ΣT ) be the isomorphisms established in the first
part of the proof. Together with the eigenvalue map ξ∗ : AG → AT , this induces an SkAlgint(ΣG)-action on
SkAlgint(ΣT ): ΓG▷ΓT = ϑT ξ

∗ϑ−1
G (ΓG)ΓT . The claim is then an equivalence of (SkAlgint(ΣG),SkAlgint(ΣT )-

modules Sk

6 Decorated skein theory and the quantum A-polynomial

The defect skein theory associated to the parabolic induction algebra is a quantization of decorated character
varieties and stacks [CMR17, CMR18, JLSS21] . Inspired by this, we call it decorated skein theory.

We start by considering skeins that cross a defect, as in Figure.

Figure 11: The coupon studied in Lemma 6.1.
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= 0 = 0

-1

= 0

Figure 12: Some decorated skein relations implied by Lemma 6.1. We implicitly color G-region (striped purple) skeins
by the fundamental representation of SL2 C.

Lemma 6.1. Let V be the highest weight representation of Uqg with highest weight λ = (λ1, . . . , λn). Sim-
ilarly, let χ be the one-dimensional Uqt representation with weight µ = (µ1, . . . , µn). Let H : Repq G ⊠
Repq T

bop → Repq B be act1l, as described in Section 6.
If V and χ have dual weights then there is a one-dimensional choice of coupons connecting them. Other-

wise the zero morphism is the only possible coupon.

This lemma means that for a fixed χ and highest weight V a skein crossing the defect is either skein-
equivalent to zero, or that any two coupons are skein-related by a scalar. The proof proceeds by direct
computation.

Proof. The coupon in Figure (left) is colored by a morphism

f ∈ HomRepqB

(
ι∗(V )⊗ π∗(χ∗), 1l

)
. (6.1)

First, the Uqb action on ι∗(V )⊗ π∗(χ) is induced by (ι⊗ π) ◦ △. Let e denote the highest weight vector of
V and 1 a generator of χ. Since (ι⊗ π)(△(Ei)) = Ei ⊗ 1, we have Ei · (e⊗ 1) = 0 and in general

Ei ·
(

ℓ∏
p=1

Fjpe⊗ 1

)
=


0 if

ℓ∑
p=1

δijp = 0

(
λi − λ−1

i

q − q−1

)∑ℓ
p=1 δijp ℓ∏

p=1

Fjpe⊗ 1 otherwise.

(6.2)

Since E1, . . . , En all act as zero on the trivial representation, we conclude from (6.2) that

f (Fj1 · · ·Fjℓe⊗ 1) = 0 for 1 ≤ j1, . . . , jℓ ≤ n. (6.3)

Therefore f sends everything except possibly e⊗ 1 to zero.
The non-zero map is a Uqb-module morphism if and only if f (Ki · (e⊗ 1)) = Ki · f(e⊗ 1). Since the Ki

all act as one on the trivial representation and

Ki · (e⊗ 1) = Ki · e⊗Ki · 1 = λiµie⊗ 1, (6.4)

the requirement is thus that λiµi = 1 for i = 1, . . . , n. In conclusion:

HomRepqB (ι∗(V )⊗ π∗(χ), 1l) ≃
{
Cq if λiµi = 1 for i = 1, . . . , n

0 otherwise.
(6.5)

Note that Lemma 6.1 implies the relations shown in Figure
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Figure 13: Our model for the boundary of a truncated decorated tetrahedron is a four-punctured sphere with three
gates (not shown) per puncture. Each puncture is in an annular T-region.

6.1 Ideal tetrahedra

We will now study the main building block of Section 7.2.
LetMtet denote the three ball B

3 ⊂ R3 stratified and labeled as follows. Pick four points on the boundary,
and label a contractible 3-dimensional neighborhood of each by T . Label the rest of M by G. This is our
model for a G-labeled tetrahedron with a small T -region surrounding each vertex. Let Σtet := (∂Mtet)\(D⊔4

T )
be the four-punctured sphere with an annular T -region surrounding each puncture. See Figure 13.

We equip each boundary component with three gates. This is two gates per puncturemore than is required
for Lemma 6.2, but facilitates gluing tetrahedra along faces. The 18 edges of the truncated tetrahedron
determine a distinguished set △tet of elements in SkAlgintRepq T⊠12(Σ0,4) which generate a quantum torus Ttet.
Two edges commute if they have no shared vertex, otherwise their exact commutation relation depends
on their weights at their shared gate. In Section 7.2 we will fix an isomorphism to an abstract quantum

torus ϕ : Ttet → WΩtet
whose product is given by XvXw := q

1
2vΩtet w

⊥
Xv+w. We will sometimes use the

shorthand Xaij := ϕ(aij), X
Aij := ϕ(Aij) for generators but emphasize that in general ϕ(b) = qλbXb for

some non-zero power λb.
The skew symmetric matrix Ωtet controlling the product is obtained from considering the commutation

relations in Figure 8 as applied to the generators shown and given a total order in Figure 14.

Ωtet :=



Ωsh

Ωsh

Ωsh

Ωsh

Ωsh,lg

−Ω⊥
sh,lg



,Ωsh,lg :=



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0
1 0 0 1 0 0
1 0 0 0 1 0
0 0 0 1 0 1
0 1 0 0 0 1
0 1 0 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
0 0 1 0 0 1



(6.6)

and Ωsh :=
(

0 1 −1
−1 0 1
1 −1 0

)
.

The following result appears in essence as [JLSS21, Prop 4.11]

Lemma 6.2. The Ore localization of the internal skein algebra at △tet is isomorphic to Ttet:

SkAlgint
GBT

(Σ0,4)[△−1] ≃ Ttet. (6.7)

Lemma 6.2 reduces to [Mul16, Thm 6.14], after noting that the stated skeins of [Mul16] are isomorphic
to our internal skein algebras by [Häı22]. The other main difference is that unlike in Muller’s theorem, △
is not a full triangulation of Σ0,4, since we could add additional non-parallel non-intersecting long edges.
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A01

A03

A02

A12

A23

A13
a02 a03

a01

a13

a12

a10

a21

a23

a20

a32

a31

a30

Figure 14: The full set of short and long edges which generate T△. The long (blue) edges have weight +1 at each
gate and pass between T -regions. The short (red) edges are oriented to go from their weight +1 end to their weight
-1 end and remain in a single T region. For the sake of matrix computations, the generators are ordered as follows:
a01, a02, a03, a10, a13, a12, a20, a21, a23, a30, a32, a31, A01, A02, A03, A12, A13, A23.

However, any two skeins incident to different gates on the same T -region puncture are related by a product
of short edges. Therefore the missing edges are both invertible in the localization and contained in T△.

To power our computations in Section 7, we now write the skein module of Mtet as a quotient of quantum

torus Ttet. We use the shorthand SkAlg(Σ)[△−1] :=
(
SkAlgint(Σ)[△−1]

)T
and similarly for skein modules.

Lemma 6.3. The localized submodule generated by the empty skein SkAlg(Σtet)[△−1]·∅ ⊂ SkMod(Mtet)[△−1]
is isomorphic to the T -invariant subalgebra of T△ quotiented by the left ideal generated by the bulk relation

q5/2(A03a32a01)(A12a23a10) + q3/2(A01a
−1
03 a

−1
12 )(A23a

−1
21 a

−1
30 ) + q3/2A13A02, (6.8)

together with the puncture monodromy relations:

q−3/2a01a02a03 + 1 q−3/2a10a12a13 + 1

q−3/2a20a21a23 + 1 q−3/2a30a31a32 + 1.
(6.9)

Where the variables are as shown in Figure 14.

Note that the short edges in the crossing relation ensure that the three terms have the same T -weights.
Restricting to the submodule generated by the empty skein corresponds to the restriction to the image of ι∗

in (5.10).

Proof. By assumption the module is cyclic, and by Lemma 6.2,

SkAlg(Σ)[△−1] ≃ T T
△ . (6.10)

Hence SkAlg(Σtet)[△−1] ·∅ ≃ T T
△tet

/I for some left ideal I. The relations (6.9) are imposed by closing the
four punctures after taking invariants. Let γi be the closed simple curve surrounding the ith puncture and
αi the associated skein, note that the αi are exactly the monomials in (6.9). In closing each puncture we
identify αi with −1 = ⟨θT ⟩dimχ = −q−1q, the trace of the twist in RepTq . See Figure 15.

Let D4 be the disk with four disjoint contractable T -regions along its boundary, so that D4 × I ≃ Mtet.
We consider a single gate in each T -region, labeled 0, 1, 2, 3 in clockwise order in both D4 and Mtet, and note
that

Skint(Mtet) ≃ Skint(D4 × I) ≃ SkAlgint(D4) ·∅D4×I (6.11)

as left SkAlgint(D4) modules4

4The action on Mtet is induced by the embedding D4 ↪→ Σtet.
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Figure 15: The framing on B13 versus A′
13 (left) and in the puncture monodromy (right).

Figure 16: The identity cobordism of D4 used in the proof of Lemma 6.3.

Let △02 := {B01, B02, B03, B12, B23} ⊂ SkAlgintRepq T 4(D4) be a triangulation of the quadrilateral. By

Lemma 6.2, SkAlgintRepq T 4(D4×I)[△−1
02 ] is generated by△02∪△−1

02 , andB13 ∼ B−1
02

(
q1/2B03B12 + q−1/2B01B23

)
in the localization.

To get the exact form of (6.8), we identify the four-gate localized internal skein module of Mtet with the
sub-quantum torus of T△tet

generated by

A′
01 := qA01a

−1
03 a

−1
12 A′

02 := A02 A′
03 := qA03a32a01

A′
12 := qA12a23a10 A′

13 := A13 A′
23 := qA23a

−1
21 a

−1
30

(6.12)

and note that the isomorphism between Mtet and D4 × I is given by

A′
ij 7→

{
−q3/2B13 ij = 13

Bij otherwise.
(6.13)

where A′
13 picks up a sign due to a framing difference, see Figure 15.

7 Quantizing the A-polynomial

7.1 Quantum tori and central relations

In this section we discuss some operations on quantum tori which can be realized on the level of their
underlying lattices. These methods are elementary but significantly reduce the complexity of the procedures
outlined in Section 7.2

Definition 7.1. Let Λ be a lattice with a skew symmetric pairing ⟨−,−⟩ : Λ× Λ→ Z. The quantum torus

WΛ is the Cq := C[q 1
2 , q−

1
2 ] algebra generated by Xv, v ∈ Λ with multiplication given by

XvXw = q
1
2 ⟨v,w⟩Xv+w (7.1)

Recall that a sublattice Γ ⊂ Λ is called co-isotropic if the pairing restricted to Γ vanishes identically; this
is equivalent to asking that the subalgebra generated by Xv for v ∈ Γ is commutative. A much stronger
condition on Γ is that it lie in the kernel of the pairing; this is equivalent to asking that the subalgebra
generated by Xv for v ∈ Γ is central. Finally, we say that Γ is unimodular if the quotient Λ/Γ is torsion-free.

We require the following elementary lemma, whose proof follows easily from the fact that WΛ is free over
WΓ with basis given by monomials Xv for v ∈ Λ/Γ.

Lemma 7.2. Let Γ ⊂ Λ be a co-isotropic sublattice, and fix a character χ : Γ → C. Then a basis for the
induced module WΛ⊗WΓ

Cχ is given by {Xv, for v ∈ Λ/Γ}. In particular, suppose that Γ is unimodular and
lies in the kernel of the pairing. Then WΛ ⊗WΓ

Cχ is naturally an algebra, and we have an isomorphism,

WΛ ⊗WΓ
Cχ
∼= WΛ/Γ.
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Figure 17: The full decorated surface Σt which appears in the computation of the quantum A-polynomial. It is drawn
here for a two-tetrahedra triangulation of the 41-knot complement. For any knot, Σt will be a T -region torus with a
G-region handle for each edge of the original ideal triangulation.

Remark 7.3. The relative tensor product WΛ ⊗WΓ Cχ may be presented as the quotient by the left ideal
I = ⟨Xv1 − χ(v1), . . . , X

vk − χ(vk)⟩, for any spanning set v1, . . . , vk of Γ. This is how it typically arises.

7.2 Computations

In this section we describe in detail the computation of the quantum A-polynomial. Computations were
implementation in the mathematics software system SageMath [The22] and rely on Singular [DGPS24] for
constructing non-commutative Gröbner basis.

Let M̃K = Mk ∪TG
TB denote the knot complement with a B-defect separating a T -region tubular

neighborhood of its boundary from a G-region bulk. Our goal is to compute the cyclic SkAlg(TT )-submodule

SK := SkAlg(TT ) ·∅ ⊂ SkMod(M̃K) (7.2)

generated by the empty skein.
Fix an ideal triangulation of the knot exterior, with t tetrahedra. There is a corresponding decomposition

of M̃K into the decorated tetrahedra described in Section 6.1. Faces are glued together via stratified boundary
connect sum along copies of D3, leading to a genus t+ 1 decorated surface Σt shown in Figure 17.

Our goal is an expression

SkMod(M̃K) ⊇ SkAlg(TT ) ·∅ ≃ SkAlg(TT )/⟨Aq⟩ (7.3)

such that specializing q1/2 → −1 recovers the classical A-polynomial. Since our computations rely heavily
on quantum cluster charts and therefore localizations, we instead produce an expression for the empty
submodule of a localization SkMod(M̃K)[△−1

K ], which is a quotient of the skein algebra by an ideal generated
by a multiple of the quantum A-polynomial. We emphasize that this is a side effect of the computational
methods, and not the decorated skein theory.

Threads and gluing relations The faces of the t decorated tetrahedra which triangulate M̃K are copies
of D3. When the faces are glued together the result is a decorated genus t + 1 surface as shown in Figure
17. This gluing operation introduces additional skeins called threads. The edges △tet of each truncated
tetrahedron’s boundary triangulation together with these threads generate a rank 30t quantum torus. A
quantum cluster chart of the internal skein algebra of the associated decorated surface is then obtained by
taking the quotient by the gluing relations shown in Figure 19. Each long edge will appear in two relations,
while each short edge will appear in one, leading to a total of 12t gluing relations. These relations are all
central and the coordinates of their monomials span a direct summand of the rank 30t lattice generated by
all short edges, long edges, and threads. We can therefore apply Lemma ??
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Figure 18: A portion of a surface with part of the gluing handle attachment shown. Long edges (blue) connect
punctures, short edges (red) surround punctures, and threads (orange) travel between tetrahedra.

akij aℓmn

x

y

q2V akij+x+aℓmn+y − 1

Akij Aℓmn

x

y

V Akij+x−Aℓmn+y − 1

Figure 19: The gluing relations which identify pairs of short (left) and long (right) edges. These rely on the addition
of threads.
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Invariants and central relations Next we restrict to the T -invariant subalgebra of the aforementioned
rank 30t quantum torus, thereby closing all gates, and quotient by the gluing relations of Figure 19 and the
puncture monodromy relations of (6.9). These relations are all central in the T -invariant subalgebra, and so
the quotient can therefore be computed on the level of the underlying lattice, see Section 7.1.

Elimination, specialization, and Aq We have now arrived at a quantum cluster chart for the internal
skein algebra of the decorated surface shown in Figure 17. We construct a basis for this chart consisting
of the longitude, meridian, thread monodromy, and extraneous variables. In this algebra we form the left
ideal generated by the bulk relations (6.8) and use a noncommutative Gröbner basis to eliminate all dummy
variables. The longitude and meridian will always commute with the thread monodromy relations, which
correspond to curves in the T -region which can be written only in terms of the threads. To obtain the skein
algebra of the origianl T -colored boundary torus of M̃K and the skein subodule generated by the empty
skein, we finally specialize these thread monodromy variables to their appropriate q-powers.
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Cham, 2021.

[JLSS21] David Jordan, Ian Le, Gus Schrader, and Alexander Shapiro. Quantum decorated character
stacks. preprint, Feb 2021. arXiv: 2102.12283.

[ML78] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer New York, New York, NY, 1978.

[Mul16] Greg Muller. Skein and cluster algebras of marked surfaces. Quantum Topology, 7(3):435–503,
2016. arXiv: 1204.0020.

[RT90] N. Y. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from quantum
groups. Communications in Mathematical Physics, 127(1):1–26, Jan 1990.

[Sta24] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2024.

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System, 2022. DOI 10.5281/zen-
odo.6259615.

[Wal06] Kevin Walker. TQFTs, May 2006.

25

https://stacks.math.columbia.edu

	Introduction
	Background
	Stratified spaces
	Categorical background

	Defect skein theory
	Defect skeins and pivotal central tensor categories
	The defect skein category

	Monadic reconstruction for defect skeins
	Cobordisms and gluing
	Cobordisms and gluing for internal skein algebras and modules
	Changing gates and closing punctures


	Parabolic induction and restriction
	The parabolic restriction disk algebra
	The half braiding

	Quantum cluster charts
	Geometric interpretation
	The skein theoretic description

	Decorated skein theory and the quantum A-polynomial
	Ideal tetrahedra

	Quantizing the A-polynomial
	Quantum tori and central relations
	Computations


